skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Neidig, Michael_L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Fe‐based catalysts are an active, selective, and low‐cost option for tuning Fischer‐Tropsch synthesis (FTS) selectivity toward desirable light olefins. By encapsulating Fe within ZSM‐5, the resultant core‐shell catalysts have the potential to control the product distribution via secondary reactions that occur over the acid sites of the zeolite shell. In this paper, Fe is encapsulated within ZSM‐5 via the seed‐directed growth technique and characterized with a suite of analytical techniques including Mössbauer spectroscopy and X‐ray absorption fine structure (XAFS). Characterization of the core‐shell catalysts indicates that some of the Fe‐based active phase is destabilized during seed‐directed growth, demonstrating the challenges associated with encapsulating an Fe‐based active phase within zeolites. However, comparing FTS performance of the core‐shell catalyst with the Fe‐based control synthesized via incipient wetness impregnation demonstrates improved selectivity toward the desired C2‐C4olefins and C5+hydrocarbons. 
    more » « less